2a4 Math Website
  • Home
    • Basics
    • Methods of Proof >
      • Induction
  • Algebra
    • Binomial Theorem
    • Arithmetic Progression
    • Factorization/Expansion
    • Functions >
      • Absolute Value
      • Logarithms
    • Algebraic Manipulation
    • Inequalities
    • Linear/ Quadratic >
      • Linear Diophantine Equations
      • Quadratic Surds
      • Roots, Coefficients, and Discriminants of Quadratic Expressions
    • Polynomial >
      • Basic Formulas on Polynomials
      • Division of Polynomials
    • Matrices
  • Number Theory
    • Perfect Squares
  • Geometry
    • Geometrical Properties of Circles
    • Midpoint Theorem
    • Triangles >
      • Congruence of Triangles
      • Similarity of Triangles
      • Properties of Triangles and Angles
      • Area & Perimeter of Triangles
      • Centers of a Triangle
      • Basic Trigonometry
    • Radians
    • Intro to Solids
  • SMO
    • SMO 2012 Round 2 Solutions
    • Introduction
  • Weekly Questions
    • Week 1-10 >
      • Week 1 >
        • Week 1 Solutions
      • Week 2 >
        • Week 2 Solutions
      • Week 3 >
        • Week 3 Solutions
      • Week 4 >
        • Week 4 Solutions
      • Week 5 >
        • Week 5 Solutions
      • Week 6 >
        • Week 6 Solutions
      • Week 7 >
        • Week 7 Solutions
      • Week 8 >
        • Week 8 Solutions
      • Week 9 >
        • Week 9 Solutions
      • Week 10 >
        • Week 10 Solution
    • Week 11 >
      • Week 11 Solution

Chinatown Question

8/20/2012

0 Comments

 
Picture

Question

Given that there are 6 people: p, q, r, s, t, and u, and they start from either points A, B, C, D, E, F, G or H, such that no 2 or more people start from the same point, how should these people move such that they end up all at the same point, and:

a) Each person covers the same distance (don't have to be exactly same, just optimize the results to match this condition)

b) The sum of the distance covered is minimized

c) All the points must be visited by at least one person

Solution

‎(see map: http://sdrv.ms/P4z7Ul)

We see that amongst the lines converging at D, AD is the longest, where AD = 11

If we try and find another destination (end point) whereby the longest line converging there is smaller than AD, we find it impossible:

1) A must be visited, so we look at the lines converging there
2) Find the lines shorter than AD: AC or AH
3) If we make C the destination, CG > AD. If we make H as the destination, BH > AD

So D should be the destination.

I know this doesn't really answer question (a) or (b), but it does help to make sure that we reduce the maximum walking distance for one person.

p.s. we can make person starting at F go to E before going to D, so EF + ED < AD
0 Comments

2009 HCI Math Paper

8/19/2012

0 Comments

 

Some Geometry Questions

Some friends have requested for some help for EOY questions in the HCI paper. Here are the solutions.
Q15)
Picture

a) 
angle EAB = 65 (base of isoc triangle)
angle AEF = angle EAB = 65 (alt. angles)
cos 65 = FE/EA
6 cos 65 = FE = roughly 2.54 (3sf)

therefore FE = roughly 2.54 (3sf)
b)
AF =
AF = roughly 5.44 (3sf)
sin angle D = sin 55 = 5.44/AD
1/sin55 = AD/5.44
5.44/sin 55 = AD

therefore AD = roughly 6.64 (3sf)

Q16)
Picture
The question:
ABC is a right-angled triangle with angle ABC - 90 degrees. Given that  AD = 10cm, DB = 6cm, BE = 8cm and EC = 10cm, find the shaded area.

See the solution below. We'll make use of menelaus theorem



Click to set custom HTML
0 Comments

Geometry

8/19/2012

0 Comments

 
This is the page where we'll be posting all our geometry stuff so please stay tuned. :)
0 Comments

    Author

    Write something about yourself. No need to be fancy, just an overview.

    Shoutbox

    Archives

    August 2012

    Categories

    All

    RSS Feed

Powered by Create your own unique website with customizable templates.